Optimized Sample to Result Workflow of Dioxin and PCBs Automated Sample Prep and GC-MS/MS Analysis in Environmental and Food

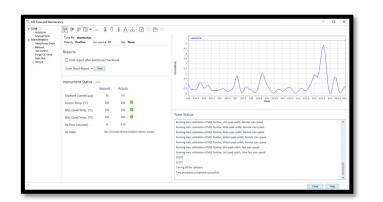

Reinvigorating Dioxins Analysis with GC/MS/MS

Joel Ferrer Product Manager, Triple Quadrupole GC/MS

Introducing the 7000E GC/TQ and 7010C GC/TQ

Next-Generation Mass Spec Intelligence Intelligence Powered Advances on GC/TQ

NEW SWARM Autotune completes 2X faster


System Screening & System Evaluation assess presence of ions and electronics status

Diagnostic Tune used for troubleshooting

A detailed system report (MSR) can be sent to a service engineer for speedy diagnostic efforts

	upole GC/MS A		•	Agilen	It Trusted Answers
Instrument Info	GZ000E	h Extractor Ion So		e Timestamp	2021-12-20 15:59:40-05:00
ms model Instrument Name	G7000E LFS-PSE-N	Indial D-03		e Timestamp e Timestamp	2021-12-20 15:59:40-05:00 2021-12-20 15:59:56-05:00
SW/FW Version	10.2.370 / 7.10.1			e Timestamp Je File	2021-12-20 15:59:50-05:00 atunes.elex
	10.2.370 / 7.10.1	-		ie Level	Full Autotune
MS1 Unit Resoluti Mass:69.0 Webb:0.69	on Profiles Mass:264.0 Webb:0.69	Mass: 502.0 Webb: 0.70	MS2 Unit Resolution	Nass:264.0	Mass: 502.0 Width: 0.71
Abundance: 3,718,542	Abundance: 2,139,745	Abundance: 739,316	Abundance: 12,875,844		
×10 ⁶ 3 2.5 2.5 2 1.5	×10 ⁶ 1.75 0 1.5 up 1.25 up 1.25 0.75	×10 ⁵ 6 9 5 4 4 3	×10 7	×10 ⁶ e 4 guppung 2	×10 ⁶ 30 0.8 9 0.6 9 0.4

Introduction

Persistent Organic Pollutants (POPs) in Stockholm Convention

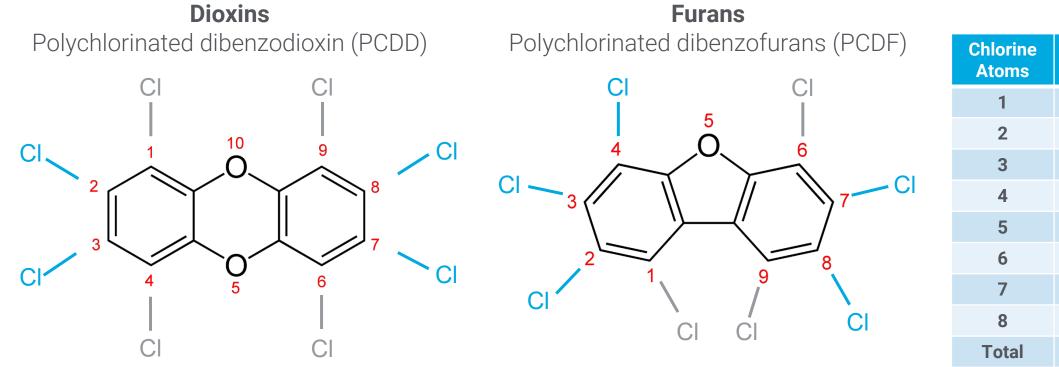
 The Stockholm Convention on POPs (2001) is a global treaty to protect human health from chemicals that remain in the environment and are persistent, bioaccumulative and transportable across the globe.

• Include:

- > Industrial chemicals ex. PCBs, hexachlorobenzene
- Pesticides ex. Aldrin, DDT, endrin, toxaphene etc.
- Pharmaceuticals
- ➢ Solvents
- > By-products ex. **Dioxins & Furans**

- Initially 'dirty dozen' but new POPs include Perfluoro alkyl substances (PFAS), short chain chlorinated paraffins (SCCPs), pesticides, Deca-BDE etc.
- Provisions include eliminating production and intentional uses, managing and disposing wastes in a suitable environmentally safe manner

A History of Dioxin Analysis and USEPA 1613B


Most Widely Used Dioxin Method Globally

- A **HRGC/HRMS** method that is used to analyze 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) in municipal and industrial discharges
- Used to determine **PCDDs and PCDFs** in water, soils, sludges and other matrices
- Specificity is provided for determination of the seventeen 2,3,7,8-substituted PCDDs and PCDFs
- This method is also used for the analysis of drinking water, food products, and human/animal tissue samples
- **Many regions** outside the U.S. also use the method as guidance or strictly follow it

PCDD and PCDF Nomenclature and Isomers EPA 1613B Analytes

2,3,7,8 – TCDD (2,3,7,8-Tetrachlorinated dibenzodioxin)

2,3,4,7,8 – PCDF (2,3,4,7,8-Pentachlorinated dibenzofurans)

75 total PCDD isomers

135 total PCDF isomers

17 toxic isomer

PCDD

Isomers

2

10

14

22

14

10

2

75

PCDF

Isomers

4

16

28

38

28

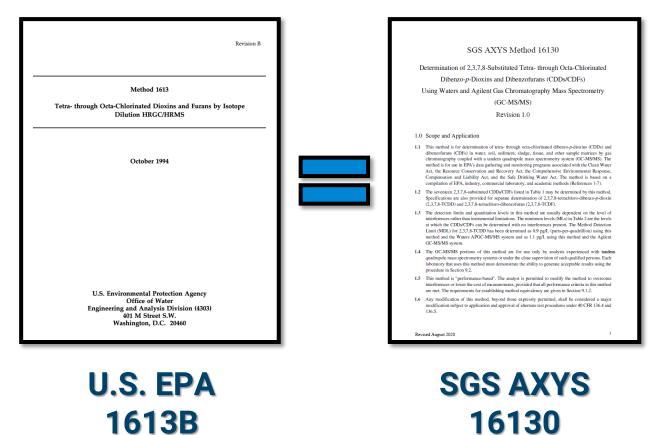
16

4

135

Toxic Equivalent Factors (TEF) 17 Toxic Dioxin Compounds

Toxic PCDDs	I-TEF	WHO ₂₀₀₅ -TEF	Toxic PCDFs	I-TEF	WHO ₂₀₀₅ -TEF
2,3,7,8-TetraCDD	1	1	2,3,7,8-TetraCDF	0.1	0.1
1,2,3,7,8-PentaCDD	0.5	1	1,2,3,7,8-PentaCDF	0.05	0.03
1,2,3,4,7,8-HexaCDD	0.1	0.1	2,3,4,7,8-PentaCDF	0.5	0.3
1,2,3,6,7,8-HexaCDD	0.1	0.1	1,2,3,4,7,8-HexaCDF	0.1	0.1
1,2,3,7,8,9-HexaCDD	0.1	0.1	1,2,3,6,7,8-HexaCDF	0.1	0.1
1,2,3,4,6,7,8-HeptaCDD	0.01	0.01	1,2,3,7,8,9-HexaCDF	0.1	0.1
1,2,3,4,6,7,8,9-OctaCDD	0.001	0.0003	2,3,4,6,7,8-HexaCDF	0.1	0.1
			1,2,3,4,6,7,8-HeptaCDF	0.01	0.01
			1,2,3,4,7,8,9-HeptaCDF	0.01	0.01
			1,2,3,4,6,7,8,9-OctaCDF	0.001	0.0003


 $TEQ = \sum_{n=1}^{17} ([PCDD/F]_i ({^{ng}/_L}) \times TEF_i) ({^{ng TEQ}/_L})$

Environmental Dioxins Testing Today

Agilent 7010C Triple Quadrupole GC/MS

- The U.S. EPA has approved an alternate testing protocol for 1613B – Analysis of Dioxins
- The new alternate testing protocol accepts GC/TQ as an <u>equivalent</u> <u>technology</u> to analyze dioxins in Environmental Samples

8

Comparison of U.S. EPA 1613B vs SGS AXYS 16130

	Requirement	U.S. EPA 1613B	SGS AXYS 16130		
	Valid for EPA compliance reporting	Yes	Yes		
	Analyte List	Tetra through Octa Dioxins and Furans (210congeners – 17 toxics)	Same as 1613B		
No Change	Matrices validated	Non-potable water, soil, sediment, fish tissue and other solids	Same as 1613B		
	Sample Prep.	Soxhlet extraction/SPE + optional carbon clean-up	Same as 1613B		
	Reporting units	Toxicity equivalents (TEQs)	Same as 1613B		
	Method Detection Levels (MDLs)	4.4 pg/L for 2,3,7,8-TCDD	1.1 pg/L for 2,3,7,8-TCDD (all MDLs calculated and in method)		
	Detector	GC/HRMS (R>10,000 at 10% valley ex. Magnetic Sector)	GC/TQ (Unit resolution)		
Updated	Instrument tuning requirements	PFK tune to meet resolution and m/z deviation of <5 ppm	Standard Autotune to meet manufacturer's specifications of mass accuracy		
	Lock mass reference requirement	Infusion of PFTBA	No lock mass; calibrant Infusion of PFTBA 'at manufacturer's specified limits' for matrix evaluation		

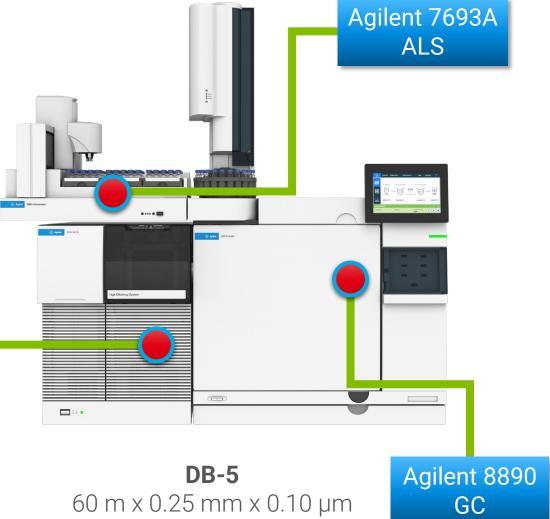
Dioxins via SGS AXYS 16130

With this approval, some modification is required...

- 6.10 Mass spectrometer—Tandem quadrupole mass spectrometer equipped with either an atmospheric pressure (AP) ionization source or an electron ionization source (70 eV range) capable of repetitively selectively monitoring at least 32 transitions at unit resolution during a period of approximately 1 second, and shall meet all of the performance specifications in Section 10. The MS/MS must have a mechanism for constantly bleeding PFTBA into the source during the analytical run, such as a needle valve or a capillary bleed directly into the source enclosure.
 - **10.2.1.2** The response of the MRM transition shown in Table 8 for the reference compound (PFTBA) is monitored throughout the run. The response of the MRM product ion shall not vary by more than $\pm 20\%$ throughout the run. Variations by more than 20% within the possible elution window of a CDD/CDF indicate the presence of coeluting interferences that may significantly alter the response of the mass spectrometer. Reinjection of another aliquot of the sample extract will not resolve the problem. Additional cleanup of the extract may be required to remove the interferences.

System Configuration

Reference Compound Introduction Valve (RCI Valve)


System Configuration

Also compatible with CTC PAL for sample introduction (1 mL vial)

Agilent 7010A/B/C GC/TQ

Equip with: Reference Compound Introduction Valve Source: 290 °C Quads: 150 °C Transfer Line: 290 °C

He Quench Gas: 2.25 mL/min **N₂ Collision Gas:** 1.5 mL/min

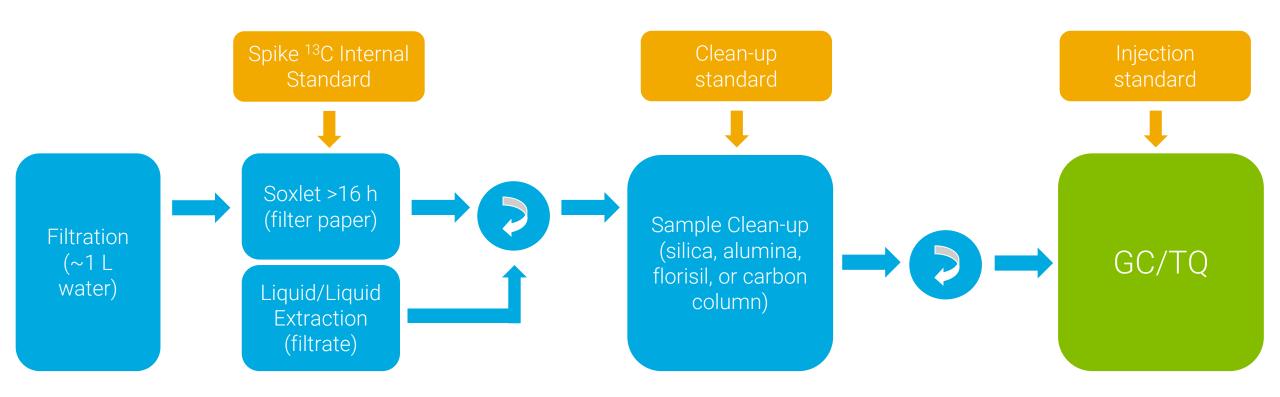
Splitless 1 µL injection

Inlet liner

Splitless, double taper, 4 mm ID

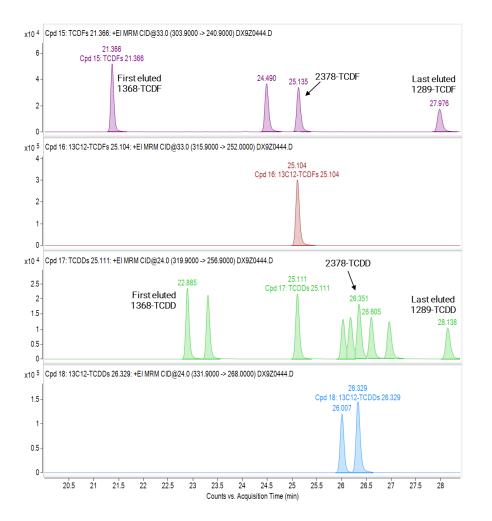
GC Parameters

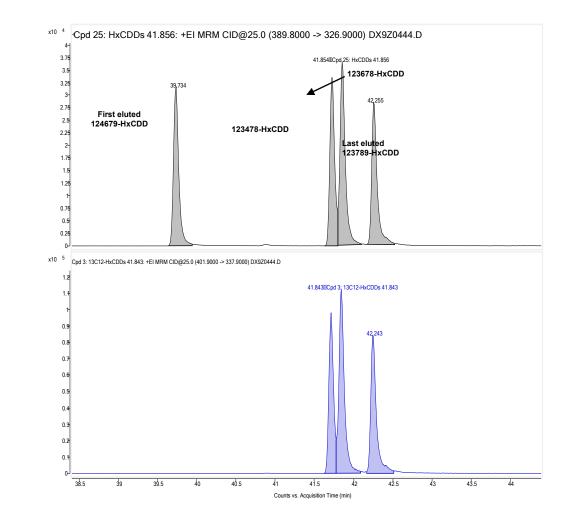
S/SL Inlet → MSD Constant Flow Flow 1.1 mL/min


Oven program:

90 °C (2 min) 22 °C/min to 200 °C 1 °C/min to 215 °C (10 min) 5.2 °C/min to 300 °C (2.7 min)

EPA Method 1613B Sample Preparation


No changes to sample preparation or collection for SGS AXYS 16130


EPA 1613B is a performance-based method

Chromatography Performance

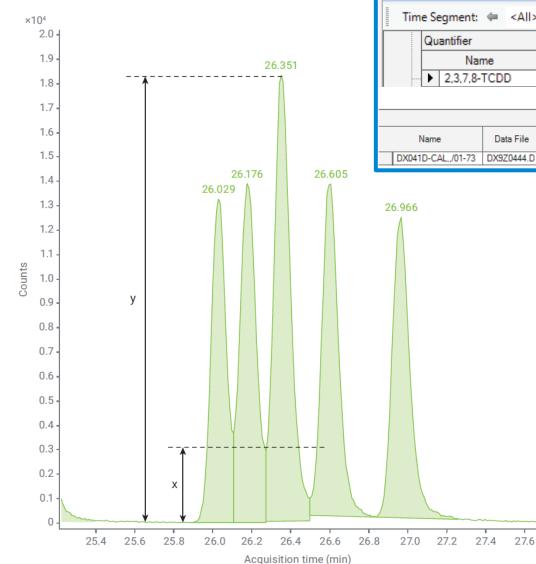

Figure 1. MRM chromatograms for TCDFs, labeled TCDF ISTD, TCDDs, and labeled TCDD ISTD.

Figure 2. MRM chromatograms for HxCDDs and the corresponding ISTD.

Chromatography Performance

Me	Method Table															
Time Segment: ← <all> ▼ ➡ Compound:</all>																
Quantifier																
		lame	TS	Tra	nsition	Sci	an		Тур	e	Т	Resolution	n Calcula	ation Typ	e Resolu	ition Limit
	▶ 2,3,7	,8-TCDD	1	319.9 -:	> 256.9,	MRM		Target			ľ	Valley Height/Peak Heig 🧹			25.0	
Sample 2,3,7,8-TCDD Results																
	Name	Data File	Туре	Level	Vial A	cq. Date-Time	Acq. Method	d File	RT	Resp.	МІ	Calc. Conc.	Accuracy	S/N	Resolution _▼ F.	Resolution R.
[DX041D-CAL,,/01-	73 DX9Z0444.D	Cal	CS3	7 8/22/2)19 2:31 AM	TQEI_DB5_D	X_11	26.351	221151		9.0183	90.2	2339.21	20.4	7.8

Figure 3. (Left) 2,3,7,8-TCDD and its close eluters.

Figure 4. (Above)

Top Row: Method setup for resolution check in MassHunter Quantitative Analysis.

Bottom Row: Front and rear valley height/peak height resolution calculated for 2,3,7,8-TCDD and its closest eluting isomers.

Reference Compound Stability

The need for lock mass monitoring of the GC/HRMS system for Method 1613B was replaced by use of a stability reference compound in the GC/TQ method.

The Agilent Reference Compound Introduction Valve (RCI Valve):

- Provides an <u>optimized flow</u> of PFTBA to observe any changes in the ionization efficiency and ion transmission
 - Seen as a change in the PFTBA signal intensity
- <u>No software changes or updates</u> are required – Controlled easily through Agilent MassHunter software

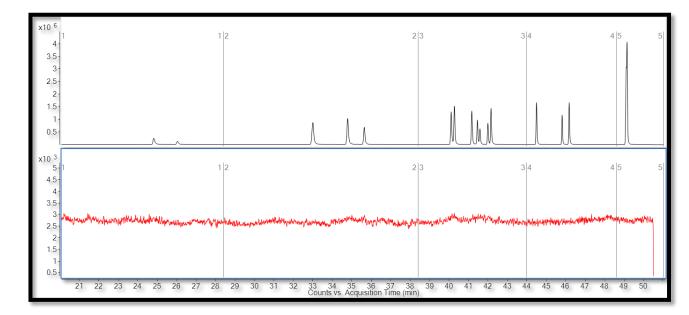


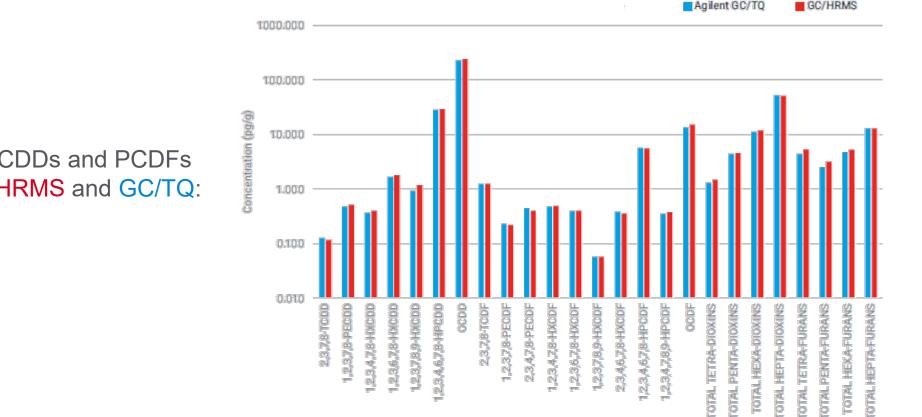
Figure 5. Stability of PFTBA response over the entire analytical run.

Compatible on 7010 Series GC/TQ

Method detection Limits (MDLs) with 7890/7010 GC/TQ Far Surpassed Method 1613B MDLs

The GC/TQ MDL results for the aqueous (1 L), solid (10 g), and tissue (10 g) samples:

	Aqueous	Solid	Tissue		
Compound	MDL and (MRL) in pg/L	MDL and (MRL) in pg/g	MDL and (MRL) in pg/g		
2,3,7,8-TCDD	1.1 (10) *	0.029 (1)	0.057 (0.5)		
1,2,3,7,8-PeCDD	1.39 (50)	0.037 (5)	0.051 (2.5)		
1,2,3,4,7,8-HxCDD	1.05 (50)	0.042 (5)	0.061 (2.5)		
1,2,3,6,7,8-HxCDD	1.08 (50)	0.045 (5)	0.033 (2.5)		
1,2,3,7,8,9-HxCDD	1.78 (50)	0.064 (5)	0.067 (2.5)		
1,2,3,4,6,7,8-HpCDD	1.19 (50)	0.070 (5)	0.032 (2.5)		
OCDD	9.4 (100)	0.311 (10)	0.085 (5)		
2,3,7,8-TCDF	0.56 (10)	0.60 (1)	0.056 (0.5)		
1,2,3,7,8-PeCDF	1.0 (50)	0.037 (5)	0.046 (2.5)		
2,3,4,7,8-PeCDF	1.25 (50)	0.039 (5)	0.033 (2.5)		
1,2,3,4,7,8-HxCDF	0.89 (50)	0.032 (5)	0.029 (2.5)		
1,2,3,6,7,8-HxCDF	1.11 (50)	0.031 (5)	0.046 (2.5)		
1,2,3,7,8,9-HxCDF	1.22 (50)	0.048 (5)	0.084 (2.5)		
2,3,4,6,7,8-HxCDF	1.26 (50)	0.026 (5)	0.034 (2.5)		
1,2,3,4,6,7,8-HpCDF	0.92 (50)	0.255 (5)	0.064 (2.5)		
1,2,3,4,7,8,9-HpCDF	1.35 (50)	0.028 (5)	0.043 (2.5)		
OCDF	2.81 (100)	0.365 (10)	0.113 (5)		


*The current MDL for 2,3,7,8-TCDD with the GC/HRMS 1613B is 4.4 pg/L

The MDL achieved with Agilent 7010B GC/TQ is **<u>4 times</u>** better!

Total PCDDs and PCDFs Reporting

Total PCDD and PCDF concentrations from the real-world sample extracts were reported by MassHunter software for each level of chlorination by <u>summing the concentration of the</u> <u>individual peaks meeting quantification criteria</u> (peak shape, S/N \ge 2.5, and product ion ratio $\pm 10\%$) in the appropriate retention time window.

DE31098482

Comparable total PCDDs and PCDFs reported using **GC/HRMS** and **GC/TQ**:

Agilent

Conclusions

GC/TQ provides many of the specificity and sensitivity advantages of HRMS

Low Cost of Ownership

Lower instrument cost without the need for expensive consumables, maintenance, or specialized instrument operators

Versatility

7010C can be used strategically with other EPA methods leading to faster ROI

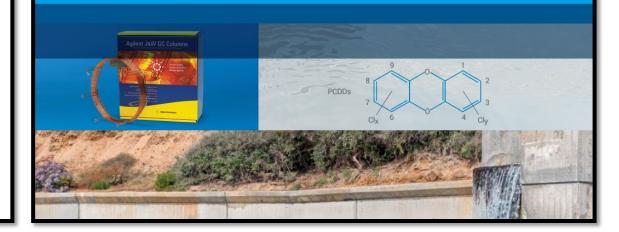
Flexibility

7010C utilizes electron ionization meaning it is compatible with several established libraries including the NIST GC Library

For More Information...

An Alternate Testing Protocol for EPA 1613B using Agilent Triple Quadrupole GC/MS

Determination of 2,3,7,8-substituted tetrathrough octa-chlorinated dibenzo-p-dioxins and dibenzofurans


Author

Application Note

Coreen Hamilton and Xinhui Xie, SGS AXYS Analytical Services Ltd.

Tarun Anumol, Anastasia Andrianova, and Dale Walker, Agilent Technologies, Inc. This study provides data used to create an alternate testing protocol for the U.S. Environmental Protection Agency (EPA) to use for Agilent 70108 Triple Quadrupole GC/MS analysis of tetra- through octa-dioxins and furans that is equivalent to EPA Method 16138. EPA Method 16138 is used for the determination of the 17 toxic tetra- through octa-chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs/CDFs) in aqueous, solid, and tissue matrices by isotope dilution gas chromatography/ high-resolution mass spectrometry (GC/HRMS) using magnetic sector instruments. Traditionally used for dioxins analysis because of their high sensitivity, GC/HRMS instruments are expensive to maintain, require a highly specialized skill set to operate, and are being phased out by manufacturers. Analysis of Dioxins in Environmental Samples using GC/MS

Consumable Workflow Ordering Guide

Visit us at www.Agilent.com

Abstract

