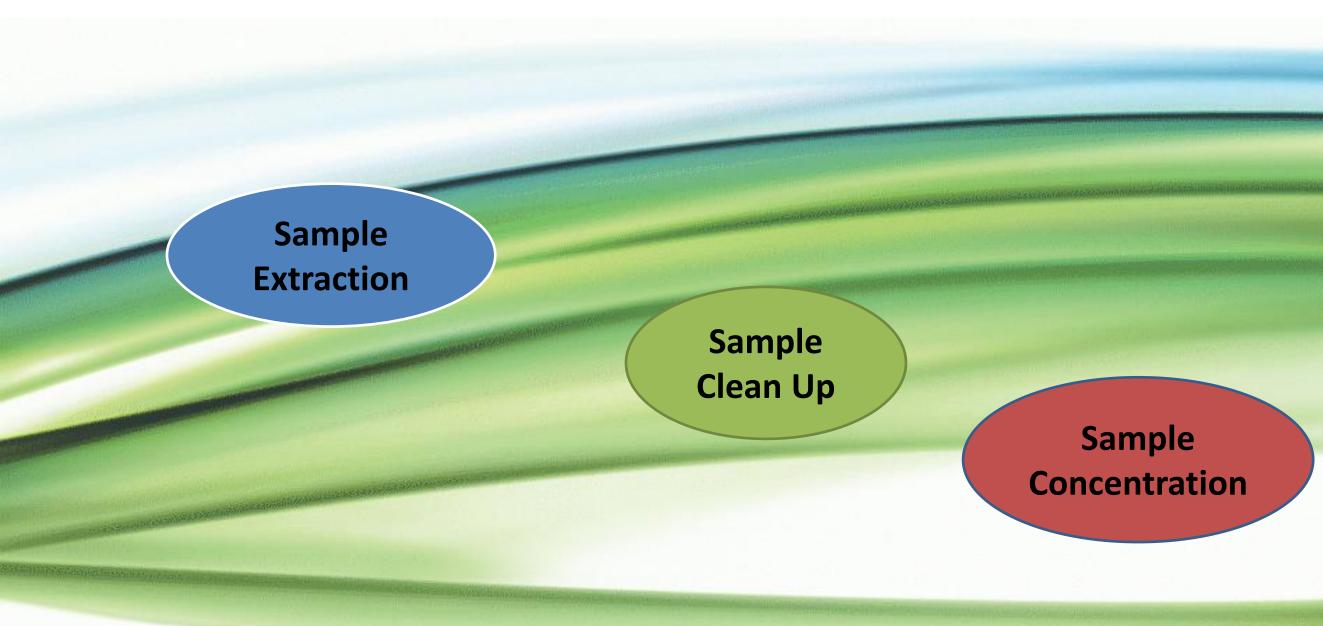


#### Introduction

#### Introduction

Persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs) and biphenyls (PCBs) have been a major environmental concern for several decades. Due to their low solubility in water and their resistance to breakdown, they tend to accumulate in river sediment. Analyses of sediment samples using US EPA methods 1613 (PCDD/Fs) and 1668 (PCBs) have been carried out around the world. Study of sediments often involves large amounts of samples, making fast processing (extraction, clean up, analysis) more important. This work describes the automated Pressurized Liquid Extraction (PLE) and semi-automated column chromatography cleanup of river sediment. Quick and easy processing results in samples being ready for same-day analysis.


## Material and methods

PLE

- 1 g of sample mixed with 10 g inert Hydro-matrix<sup>®</sup> and spiked with surrogates
- Sample placed in extraction cell
- Capped with disposable Teflon end caps
- Heated with 50% Dichloromethane/50% Hexane for 20 min at 120 °C and 1500 psi
- 20 min cool down
- Nitrogen flush to transfer analytes and extract to 250 mL collection tubes

#### SuperVap Concentration

- Pre-heat temperature: 45 °C
- Pre-heat time: 15 min
- Heat in Sensor mode: 45 °C
- Nitrogen Pressure: 8 psi
- Solvent exchange to hexane



# Workflows Optimized for High Throughput, Robust Persistent Organic **Pollutants (POPs) Analysis in Environmental Matrices**

Ruud Addink, Tom Hall Fluid Management Systems, 900 Technology Park Drive Billerica, MA 01821 www.fms-inc.com

### Materials and methods **Procedure EZPrep**

#### Stage 1:

- Assemble EZPrep with acid silica-alumina-carbon.
- Syringe vial at top is used for conditioning and sample loading.
- Condition all columns with 40 mL hexane (vacuum, waste)
- Load samples in hexane (vacuum, waste).
- Elute all columns with 100 mL hexane (vacuum, waste).
- Discard acid silica columns

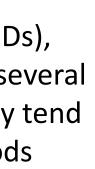
#### Stage 2:

Elute alumina-carbon columns with 50 mL dichloromethane to collect mono- and di-ortho PCBs (Fraction # 1).

Discard alumina columns.

Reverse carbon columns and elute with 50 mL toluene, collecting co-planary PCBs and PCDD/Fs (Fraction # 2).

#### SuperVap Concentration


Collected fractions are reduced to 1 mL final volume at ~ 8 psi nitrogen flow at 50 °C, followed by reduction to 10 uL.

#### Analysis

Samples were analyzed on Agilent 7010B Triple Quad.

### **Additional Features EZPrep**

- Total run time is about 35 min
- Re-use of tubing, syringes, parts and glass ware
- No electronics and mechanical parts to fail
- No service contract or maintenance to worry about
- No repetitive motions and minimal cleaning of reusable parts



| Native measured  Reference Main  Reformation  Recoveries    pg/g  pg/g  pg/g  %    2378-T4CDF  742  818  94%    2378-T4CDF  268  351  92%    12378-P5CDF  533  544  103%    23478-P5CDF  554  623  91%    12378-P5CDF  554  623  91%    12378-P5CDF  216  273  101%    12378-P5CDF  716  103  101%    12378-P5CDF  718  160  82%    123678-H6CDF  705  779  83%    1234678-H6CDF  732  805  84%    123478-H6CDF  503  519  82%    123478-H6CDF  933  251  80%    123478-H6CDF  893  21  1    123478-H6CDF  893  21  1    123478-H6CDF  859  81%  91%    123478-H6CDF  859  81%  91%    1234678-H7CDF  636  182  90%    1234678-H7CDF <td< th=""><th></th><th colspan="8">Results</th></td<> |               | Results |                    |            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|--------------------|------------|--|--|--|--|--|
| 2378-T4CDF74281894%2378-T4CDD26835192%12378-P5CDF533584103%23478-P5CDF55462391%12378-P5CDD216273101%12378-P5CDD216273101%123478-H6CDF17816082%123678-H6CDF70577983%123478-H6CDF73280584%123478-H6CDF73280584%123478-H6CDF50351982%123478-H6CDD39332580%1234678-H6CDD28922111234678-H7CDF1234678-H7CDF16318290%1234678-H7CDF16345582%1234678-H7CDF65980581%1234678-H7CDF63345582%1234678-H7CDF63445582%                                                                                                                                                                                                                                                                                      |               |         | Reference Material | Recoveries |  |  |  |  |  |
| 2378-T4CDD26835192%12378-P5CDF533584103%23478-P5CDF55462391%12378-P5CDD216773101%123478-H6CDF17816082%123678-H6CDF70577983%123478-H6CDF73280584%123789-H6CDF50351982%123478-H6CDD50351982%123478-H6CDD28922111234678-H7CDF16318290%1234678-H7CDF16345582%1234678-H7CDF16345582%                                                                                                                                                                                                                                                                                                                                                                                                             |               | pg/g    | pg/g               | %          |  |  |  |  |  |
| 12378-P5CDF  533  584  103%    23478-P5CDF  554  623  91%    12378-P5CDD  216  273  101%    123478-H6CDF  178  160  82%    123678-H6CDF  705  779  83%    234678-H6CDF  732  805  84%    123789-H6CDF  410  455  77%    123478-H6CDD  503  519  82%    123678-H6CDD  393  325  80%    123478-H6CDD  859  805  81%    1234678-H7CDF  163  182  90%    1234678-H7CDF  453  455  82%    1234678-H7CDF  639  805  81%    1234678-H7CDF  163  182  90%    1234678-H7CDF  453  455  82%                                                                                                                                                                                                           | 2378-T4CDF    | 742     | 818                | 94%        |  |  |  |  |  |
| 23478-P5CDF55462391%12378-P5CDD216273101%123478-H6CDF17816082%123678-H6CDF70577983%234678-H6CDF73280584%123789-H6CDF41045577%123478-H6CDD50351982%123678-H6CDD28922111234678-H7CDF16318290%1234678-H7CDF45582%11234678-H7CDF65351981%1234678-H7CDF85980581%1234678-H7CDF45345582%1234678-H7CDD45345582%                                                                                                                                                                                                                                                                                                                                                                                     | 2378-T4CDD    | 268     | 351                | 92%        |  |  |  |  |  |
| 12378-P5CDD216273101%123478-H6CDF17816082%123678-H6CDF70577983%234678-H6CDF73280584%123789-H6CDF41045577%123478-H6CDD50351982%123678-H6CDD39332580%123789-H6CDD28922111234678-H7CDF16318290%1234678-H7CDF45345582%1234678-H7CDF63445582%                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12378-P5CDF   | 533     | 584                | 103%       |  |  |  |  |  |
| 123478-H6CDF17816082%123678-H6CDF70577983%234678-H6CDF73280584%123789-H6CDF41045577%123478-H6CDD50351982%123678-H6CDD39332580%123789-H6CDD2892211001234678-H7CDF16318290%1234678-H7CDF45345582%1234678-H7CDF6661234678-H7CDF6681%1234678-H7CDF6685%1234678-H7CDF6682%1234678-H7CDF6682%1234678-H7CDF6685%1234678-H7CDF6685%1234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF6661234678-H7CDF<                                                                                   | 23478-P5CDF   | 554     | 623                | 91%        |  |  |  |  |  |
| 123678-H6CDF  705  779  83%    234678-H6CDF  732  805  84%    123789-H6CDF  410  455  77%    123478-H6CDD  503  519  82%    123678-H6CDD  393  325  80%    123789-H6CDD  289  211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12378-P5CDD   | 216     | 273                | 101%       |  |  |  |  |  |
| 234678-H6CDF  732  805  84%    123789-H6CDF  410  455  77%    123478-H6CDD  503  519  82%    123678-H6CDD  393  325  80%    123789-H6CDD  289  221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123478-H6CDF  | 178     | 160                | 82%        |  |  |  |  |  |
| 123789-H6CDF  410  455  77%    123478-H6CDD  503  519  82%    123678-H6CDD  393  325  80%    123789-H6CDD  289  221  -    1234678-H7CDF  859  805  81%    1234678-H7CDF  163  182  90%    1234678-H7CDF  453  455  82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123678-H6CDF  | 705     | 779                | 83%        |  |  |  |  |  |
| 123478-H6CDD  503  519  82%    123678-H6CDD  393  325  80%    123789-H6CDD  289  221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234678-H6CDF  | 732     | 805                | 84%        |  |  |  |  |  |
| 123678-H6CDD  393  325  80%    123789-H6CDD  289  221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123789-H6CDF  | 410     | 455                | 77%        |  |  |  |  |  |
| 123789-H6CDD  289  221    1234678-H7CDF  859  805  81%    1234789-H7CDF  163  182  90%    1234678-H7CDD  453  455  82%    0CDF  456  455  455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123478-H6CDD  | 503     | 519                | 82%        |  |  |  |  |  |
| 1234678-H7CDF 859 805 81%<br>1234789-H7CDF 163 182 90%<br>1234678-H7CDD 453 455 82%<br>OCDF 456 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123678-H6CDD  | 393     | 325                | 80%        |  |  |  |  |  |
| 1234789-H7CDF 163 182 90%<br>1234678-H7CDD 453 455 82%<br>OCDF 456 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123789-H6CDD  | 289     | 221                |            |  |  |  |  |  |
| 1234678-H7CDD 453 455 82%<br>OCDF 456 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1234678-H7CDF | 859     | 805                | 81%        |  |  |  |  |  |
| OCDF 456 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1234789-H7CDF | 163     | 182                | 90%        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1234678-H7CDD | 453     | 455                | 82%        |  |  |  |  |  |
| OCDD 1616 1420 88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OCDF          | 456     | 455                |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OCDD          | 1616    | 1420               | 88%        |  |  |  |  |  |

**able 1**. 1 g sediment reference material analyzed. Values found vs reference material values for PCDD/Fs

|                |   |       | Native   |                    |  |            |
|----------------|---|-------|----------|--------------------|--|------------|
|                |   |       | measured | Reference material |  | Recoveries |
|                |   | PCB # | pg/g     | pg/g               |  | %          |
|                |   |       |          |                    |  |            |
| 33'44'-T4CB    |   | 77    | 35       | 37                 |  | 102%       |
| 344'5-T4CB     |   | 81    | 312      | 279                |  | 95%        |
| 233'44'-P5CB   |   | 105   | 20       | 22                 |  | 102%       |
| 2344'5-P5CB    |   | 114   | 185      | 182                |  | 100%       |
| 23'44'5-P5CB   |   | 118   | 80       | 98                 |  | 99%        |
| 2'344'5-P5CB   |   | 123   | 180      | 195                |  | 102%       |
| 33'44'5-P5CB   |   | 126   | 301      | 316                |  | 103%       |
| 233'44'5-H6CB  |   | 156   | 316      | 279                |  | 110%       |
| 233'44'5'-H6CB |   | 157   | 153      | 156                |  | 107%       |
| 23'44'55'-H6CB |   | 167   | 150      | 145                |  | 88%        |
| 33'44'55'-H6CB |   | 169   | 264      | 258                |  | 119%       |
| 233'44'55'-H7C | В | 189   | 31       | 32                 |  | 118%       |

Table 2. 1 g sediment reference material analyzed. Values found vs reference material values for PCBs

As can be seen the sediment analysis showed excellent agreement between the values found with our automated extraction and semiautomated clean up and the acceptable reference values provided for this material. Furthermore, the method gave excellent recoveries. Extraction, clean up and analysis by properly trained personnel can be carried out in one day, resulting in low turnaround times for large (and small) sample batches.

Sample

Samples

#### **Discussion and Conclusions**



#### For additional information please contact:

**Ruud Addink** r.addink@fms-inc.com