

Quick and Reliable Method for Cleanup of all 209 PCBs in One Fraction in Environmental Samples

Tom Hall and Ruud Addink Fluid Management Systems Billerica MA USA

Introduction (1)

- POPs (PCDD/Fs, PCBs) continue to attract interest around the world due to strict regulations enforced in many countries
- Rapid and quality sample clean up and analysis is needed for many laboratories processing samples
- Processing times and cost are important considerations
- In the US, EPA methods SW-846, 1613B, 1668C and 8082A are used for PCBs and PCDD/Fs work

Introduction (2)

- Sample extracts in DCM, hexane or toluene
- Cleanup for analysis of all 209 PCBs in common in North America extracts are often in toluene after Soxhlet Extraction

Challenges of POPs Sample Prep

- Labor intensive, prone to error
- Compliance with regulatory procedures and accreditation (lengthy method validation)
- Strict QA/QC requirements
- Sample matrix complexity
- Native background and interferences (can be orders of magnitude higher than analytes)
- Pico/femto-gram analyses require ultra pure extract and excellent instrument sensitivity

Automated Sample Prep

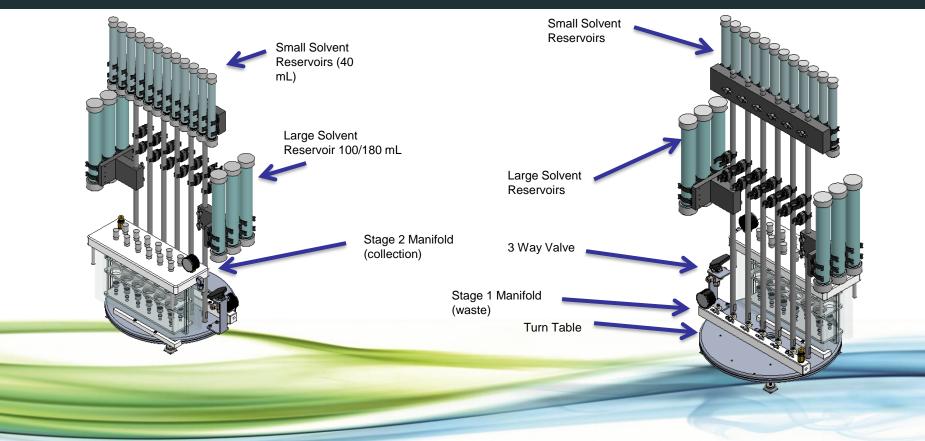
Advantages of Automated Sample Prep

- Rapid Turn Around Time:
- Cleaner Background Interferences:
- Quality Results:
- Green Technology:
- QA/QC & Accreditation Requirements:
- Computerized Method:

30 to 45 Minutes for 6 Samples Closed Loop System Certified Pre-packaged Columns Lower solvent and power use Easier to Manage Instrumentation based prep

Manual Sample Prep

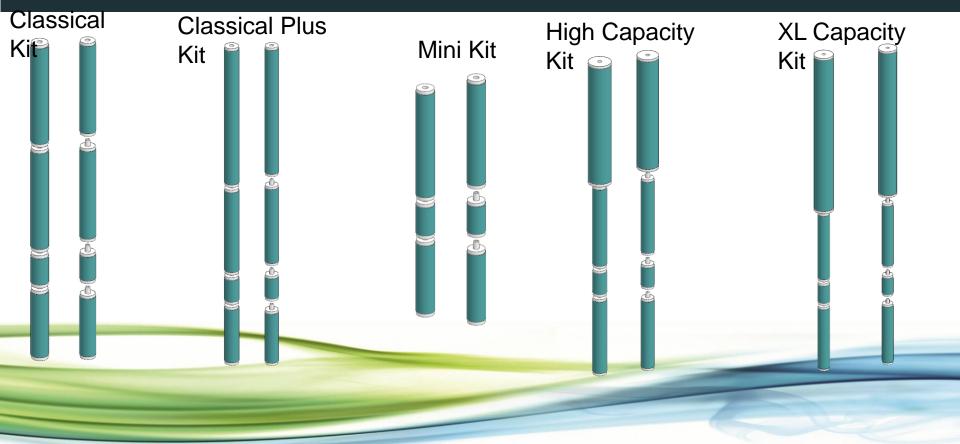
- Advantages of Manual Sample Prep
 - Most labs use a Manual Methods for the following reasons:
 - No electronics or mechanical components to fail
 - No down time due to the system failure
 - No service contract
 - No capital equipment cost


Semi-Automated System

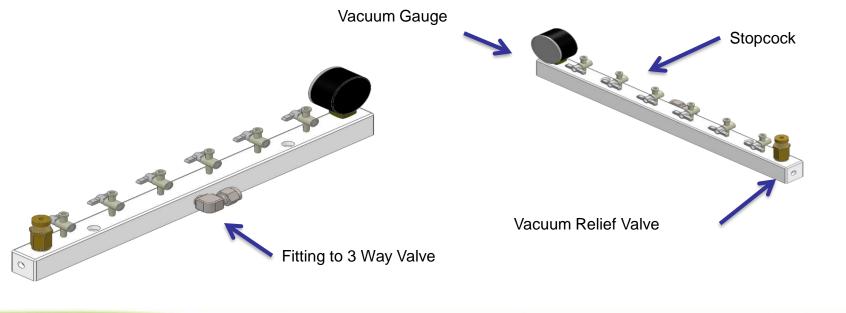
Specification:

- Simple to run, no computerized instrumentation
- Fast: 30 to 45 min
- Closed loop system to give a clean background, low level detection
- Use certified pre-packaged columns
- Green technology, only vacuum pump uses power
- Low solvents, as low as 160 mL for serum
- Economical column kits, choice of low fat and high fat column kits
- No capital equipment cost
- No electronics or mechanical equipment to fail
- No downtime

Characteristics of Semi-Automated System (EZPrep)

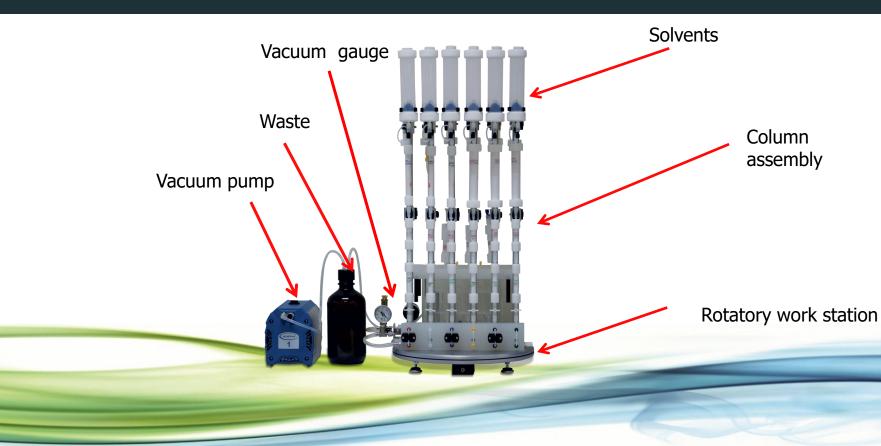


Columns (1)

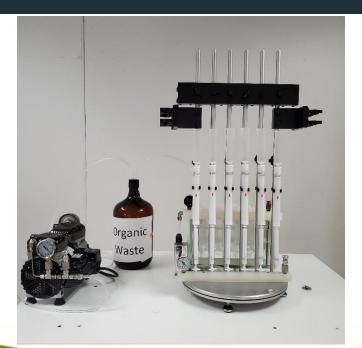


Columns (2)

Stage 1 Manifold

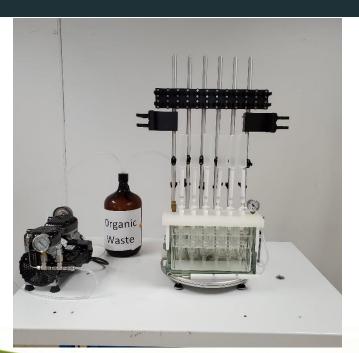


Stage 2 Manifold



Stage 1: to waste

EZPrep Stage 1



Stage 2: collect

Attributes

- Closed loop system:
 - Eliminates background contaminants
 - No washing needed.
 - Capped solvent reservoirs
- Optimized for solvent reduction while obtaining highest possible recoveries
- Easy sample loading on top of silica column via injection or syringe vial
- Columns connect easy with SNAP connections

- Stage 1: Connect High Capacity Acid Silica and Alumina (no Carbon) and condition with 60 mL of hexane (vacuum, waste)
- Stage 2: Load sample (in hexane, collect Fraction # 1), rinse loading vials with hexane, elute with 160 mL hexane (collect Fraction # 1), remove acid silica, elute alumina with 50 mL dichloromethane (collect Fraction # 1)
- All 209 PCBs are now in Fraction # 1

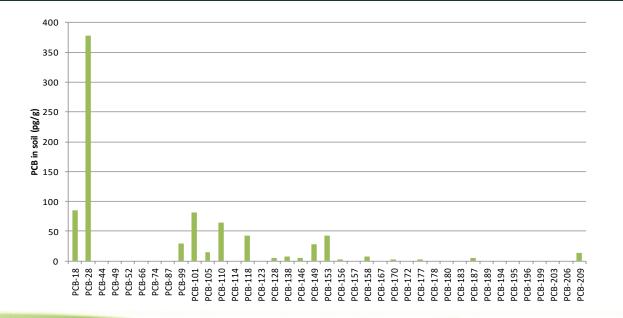
SuperVap 6 Concentrator 250 mLs

SuperVap Concentration/Evaporation

- System pre-heated to 50 °C.
- Samples evaporated at stable T under 8 psi nitrogen.
- 1 mL extract vial transferred to GC vial (can have direct-to-vial feature).
- Recovery standards added (nonane/dodecane).
- Extract taken to 10 uL volume with a gentle stream of nitrogen at ambient temperature.

SuperVap 24 position GC vial Concentrator

Direct-to-Vial

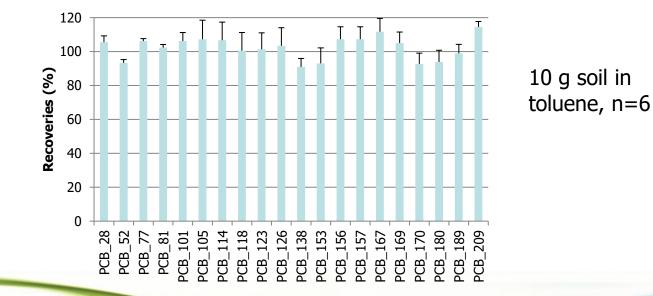


7010B TripleQuad

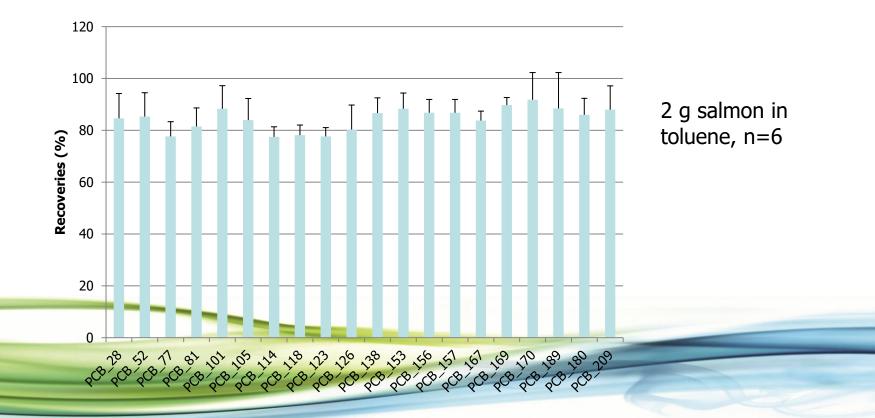
Native PCBs in Soil extract

Column Kits with various fat removal capacities for samples in hexane

		STAGE 1	STAGE 2			
						PCBs
	Fat Removal	Hexane	Hexane	Hexane		DCM
Column kits	Capacity	conditioning	sample volume	Elute Silica		Alumina
Mini kit	0.15 Gram	20	10	80		50
Classical kit	0.5 g	20	10	90		50
Classical Plus	1.0 g	20	10	100		50
High Capacity	2.5 g	40	30	160		50
Extra high Capacity	5.0 g	60	30	180		50


Extracts in toluene -PCBs

- Stage 1: Connect High-Capacity Acid Silica and Alumina (no Carbon) and condition with 60 mL of hexane (vacuum, waste)
- Stage 2: Load sample (in 2-10 mL toluene, collect Fraction # 1), rinse loading vials with hexane, elute with 60 mL hexane (collect Fraction # 1), remove acid silica, elute alumina with 50 mL dichloromethane (collect Fraction # 1)
- All 209 PCBs are now in Fraction # 1



13C recoveries PCBs soil

13C recoveries PCBs salmon

Conclusions (1)

- Samples in toluene (environmental, food): 2-10 mL toluene, collect all 209 PCBs in one fraction using hexane and DCM
- Reduced hexane volume needed for acid silica column because of presence toluene (can also be DCM)
- Alternative for samples in toluene: use hexane to have 209 PCBs in one fraction
- Works also for samples in hexane but more hexane needed in that case for silica elution ("toluene effect" not present)

Conclusions (2)

- High sample throughput \rightarrow 18 samples/hour
 - 6 samples in parallel per station
 - 3 stations fit in one hood
- System gives excellent recoveries for PCBs comparable to automated systems
- Use of certified pre-packaged columns guarantees low native background
- No worries about breakdown or downtime
- No washing needed
- No cross-contamination
 - Low cost

Come see us at booth G-2 Questions?

raddink@fms-inc.com

thall@fms-inc.com

