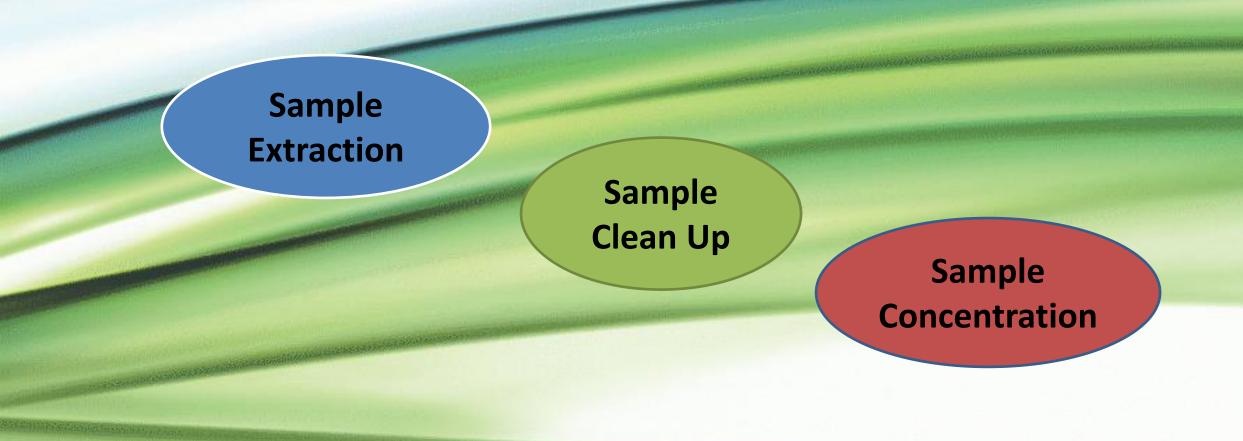


Introduction

Continued interest in Persistent Organic Pollutants (POPs), such as organochlorine pesticides (EPA method 508) and polychlorinated dibenzo-pdioxins (PCDDs), furans (PCDFs), and biphenyls (PCBs) (EPA methods 1613/1668C), has led to a variety of automated systems for the solid phase extraction of various kinds of water samples, including drinking water.


To meet demands for a lower cost method that requires less financial investment than the automated systems, we developed a simple semi automated system which is fast and inexpensive while yielding high quality data.

Instrumentation

- FMS EZSpe[®] System
- FMS SuperVap[®]
- Vacuum pump
- ■7010B Agilent TripleQuad
- 7890A Agilent FID-ECD

Consumables

- FMS, Inc. 1 g C18 cartridge
- Ultra pure DI water
- Fisher 6 N Hydrochloric Acid
- Fisher Pesticide Grade Methanol
- Fisher Pesticide Grade Dichloromethane
- Fisher Sodium Sulfate
- Methods 508, 1613 and 1668 C spiking and recovery standards

Analysis of Persistent Organic Pollutants in Drinking Water with Semi-Automated Solid Phase Extraction

Tom Hall, Ruud Addink Fluid Management Systems

Fluid Management Systems, 900 Technology Park Drive, Billerica MA 01821 www.fms-inc.com

Material and Methods

SPE Procedure

Procedure

- 12 samples (1L water each) are prepared and acidified with 1 mL HCl till pH ~ 2
- Spike with relevant standards
- Put sample bottles in place and fill dichloromethane rinse bottles with 25 mL solvent
- Cartridges are installed in each of the six positions. Stage 1:
- Vacuum is turned on
- Cartridges are conditioned with 5 mL each of dichloromethane, methanol and water
- Samples are loaded across cartridges under vacuum
- Cartridges are dried with nitrogen for 10 min Stage 2:

Sample bottles are automatically rinsed from the rinse bottles with 25 mL dichloromethane

Dichloromethane from sample bottles is loaded across the C18 cartridge and sodium sulfate cartridge and the eluent is collected for analysis into Direct to GC Vial **Collection Vessels**

FMS SuperVap[®]

■Pre-heat temp: 50 ^oC

- Pre-heat time: 15 minutes
- Heat in Sensor mode at 50 °C under nitrogen (7-10 psi)
- Direct to GC Vial Vessel Reduce to 1 mL

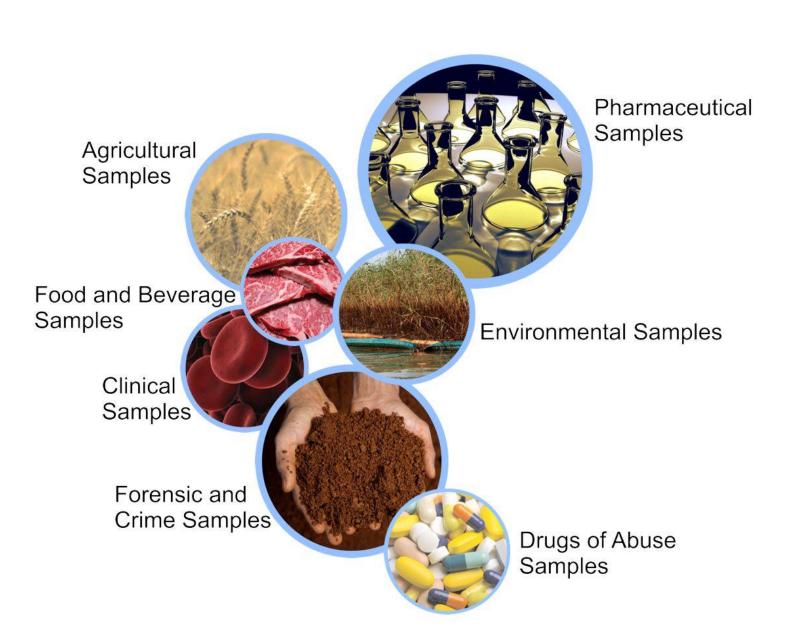
Add recovery standards and reduce to 10 uL at ambient temperature for analysis (1613 and 1668C)

DCM in samples for ECD exchanged to hexane

Results

Table 1 with ¹³C labeled recoveries (average, %) for PCDD/Fs and PCBs

			_	
2378-TCDF	94	Р	CB 28	
2378-TCDD	106	Р	CB 52	
12378-PeCDF 23478-PeCDF	92 78	Р	CB 77	
12378-PeCDD	87	Р	CB 81	
123478-HxCDF	96	P	CB 101	
123678-HxCDF 234678-HxCDF	74 86			
123789-HxCDF	93		CB 105	
123478-HxCDD	106	PC	CB 114	
123678-HxCDD	76	PC	CB 118	
1234678-HpCDF 1234789-HpCDF	73 78	P	CB 123	
1234678-HpCDD	84	P	CB 126	
OCDD	88	P	CB 138	
			CB 153	
			CB 156	
		PC	CB 157	
		PC	CB 167	
		PC	CB 169	
		P	CB 170	
		P	CB 180	
		P	CB 189	
Compound name		Average (%	6) RSD (%)	
тсмх		70.0	5.1	
Alpha - BHC		81.6	2.0	
Beta- BHC		93.9	4.7	
Gamma- BHC (Lindane)		83.1	4.7	
Delta- BHC		98.9	5.9	
Heptachlor		82.5	5.0	
Aldrin		80.0	4.5	
Heptachlor Epoxid	e	89.8	5.2	
Endosulfan I		87.8	4.7	
4, 4- DDE		84.0	4.7	
Dieldrin			4.7	
Endrin		85.9	1.7	
		85.9 70.6	5.3	Λ
Endosulfan II				
Endosulfan II Endrin Aldehyde		70.6	5.3	
		70.6 90.5	5.3 4.8	
Endrin Aldehyde		70.6 90.5 119.1	5.3 4.8 5.9	
Endrin Aldehyde 4, 4 -DDD		70.6 90.5 119.1 81.7	5.3 4.8 5.9 5.1	
Endrin Aldehyde 4, 4 -DDD Endosulfan sulfate		70.6 90.5 119.1 81.7 95.0	5.3 4.8 5.9 5.1 5.1	
Endrin Aldehyde 4, 4 -DDD Endosulfan sulfate 4,4 -DDT		70.6 90.5 119.1 81.7 95.0 96.2	5.3 4.8 5.9 5.1 5.1 6.4	
Endrin Aldehyde 4, 4 -DDD Endosulfan sulfate 4,4 -DDT Endrin Ketone		70.6 90.5 119.1 81.7 95.0 96.2 110.9	5.3 4.8 5.9 5.1 5.1 6.4 5.8	



FMS EZSpe system

Table 2 with 508 OCP recoveries (1 ug/L) spike)

The semi-automated FMS EZSpe system produces reliable, reproducible results for organochlorine pesticides, dioxins and pcbs in drinking water. The system is less expensive than fully automated SPE equipment and produces fast and reliable data.

Discussion and Conclusions

For additional information please contact:

Tom Hall Fluid Management Systems thall@fms-inc.com www.fms-inc.com