Polychlorinated Dibenzo-p-dioxins, Furans and Biphenyls in Fish: Automated Sample Processing

Introduction

The occurrence of polychlorinated dibenzo-pdioxins (PCDDs), furans (PCDFs) and biphenyls (PCBs) in a variety of foods has been amply documented. This includes fish for human consumption. Some evidence has been found for a relationship between concentrations in sediment and fish tissue. Analyses of fish samples using US EPA methods 1613 (PCDD/Fs) and 1668 (PCBs) have been carried out around the world. Traditional Soxhlet extraction and sample clean up are time consuming and can result in data of low quality and reproducibility. This application note describes the automated Pressurized Liquid Extraction (PLE) and automated open column chromatography clean up (PowerPrep) of fish tissue. Quick and easy processing results in samples being ready for same-day analysis.

Instrumentation

- FMS, Inc. PLE®
- FMS, Inc. PowerPrep®
- FMS, Inc. SuperVap® 6 Concentrator
- FMS, Inc. SuperVap® Vial Concentrator
- FMS, Inc. 250 mL concentrator tubes (1 mL termination)
- ■Thermo Trace GC Ultra with high res magnetic sector DFS Thermo mass spec

Consumables

- FMS, Inc. Jumbo Acidified Silica column
- FMS, Inc. Classical Acid-Base-Neutral column
- FMS, Inc. Basic Alumina column
- FMS, Inc. Carbon-Celite column
- Millipore OmniSolv® Benzene
- Fisher Optima® Dichloromethane
- Fisher Optima® Ethylacetate
- Fisher Optima® Hexane

- Fisher Optima ® Toluene
- Cambridge Isotope Labs (CIL) EDF-2526 Fortified Fish Reference Material
- CIL EDF-8999 Method 1613 ¹³C PCDD/F Stock Solution
- CIL EDF-5999 ¹³C PCDD/F Recovery Standard
- CIL EC-4995 ¹³C PCB Internal Isotope Dilution Standard who-12 PCB and 170/180
- CIL EO-5275 ¹³C PCB Recovery Standard

PLE

- 5 g of sample mixed with 10 g inert Hydro-matrix® and spiked with surrogates
- Sample placed in extraction cell
- Capped with disposable Teflon end caps
- Heated with 50% Dichloromethane/50% Hexane for 20 min at 120 °C and 1500 psi
- 20 min cool down
- Nitrogen flush to transfer analytes and extract to 250 mL collection tubes

SuperVap Concentration

■ Pre-heat temperature: 45 °C

■ Pre-heat time: 15 min

Heat in Sensor mode: 45 °C

■ Nitrogen Pressure: 6-8 psi

Solvent exchange to hexane

PowerPrep Clean Up

- Standard 25-step program
- Install jumbo silica, classical ABN, alumina and carbon/celite columns
- Mixes used are hexane, 2%/98% dichloromethane/hexane, 50%/50% dichloromethane/hexane, 50%/50% ethylacetate/benzene, and toluene

- Run conditioning steps 1-13 with columns in place
- Load sample (in hexane)
- Elute silica with 150 mLs hexane (waste)
- Elute alumina with 60 mLs 2%/98% DCM/ hexane (collect as F1)
- Elute alumina with 120 mLs 50%/50% DCM/hexane (collect as F1)
- Elute carbon with 4 mL 50%/50% ethylacetate/benzene (collect as F1)
- Elute carbon with 75 mLs toluene (collect as F2)

SuperVap step (above)

Vial Evaporator

■ Reduce sample to 10 uL final volume under 1-1.5 psi nitrogen at 25 °C

Table with native fish tissue values, reference material values and ¹³C-labeled recoveries.

	native	reference value	recoveries
	pg/g	pg/g	%
2378-T4CDF	19.79	18.7 ± 9.35	87%
2378-T4CDD	20.40	19.8 ± 0.099	87%
12378-P5CDF	36.34	39 ± 19	91%
23478-P5CDF	37.77	37.8 ± 18.9	90%
12378-P5CDD	38.02	40 ± 20	93%
123478-H6CDF	74.62	83.3 ± 41.7	87%
123678-H6CDF	56.72	62.8 ± 31.4	83%
234678-H6CDF	54.72	58.6 ± 29.3	84%
123789-H6CDF	51.78	57.3 ± 28.6	89%
123478-H6CDD	47.42	54.9 ± 27.4	83%
123678-H6CDD	50.13	51.1 ± 25.5	83%
123789-H6CDD	50.48	52.9 ± 26.4	
1234678-H7CDF	76.24	81.6 ± 41.3	83%
1234789-H7CDF	70.84	76.7 ± 38.8	87%
1234678-H7CDD	65.61	70.7 ± 35.3	87%
OCDF	173.68	185 ± 92.5	
OCDD	166.25	181 ± 90.5	79%

Table with native fish tissue values, reference material values and ¹³C-labeled recoveries.

	native pg/g	reference value pg/g	recoveries %
77	612.91	451 ± 225	77%
81	1.89	3.0 ± 1.5	68%
105	105.80	108 ± 54	58%
114	8.15	7.73 ± 3.86	66%
118	298.35	348 ± 174	45%
123	39.47		67%
126	419.82	431 ± 215	62%
156	17.35	23.3 ± 11.6	64%
157	5.58	9.3 ± 4.6	74%
167	12.55	12.0 ± 6.0	78%
169	477.50	512 ± 256	90%
170	29.93		89%
180	99.94	116 ± 58	83%
189	1.84	3.51 ± 1.75	90%
	81 105 114 118 123 126 156 157 167 169 170 180	pg/g 77 612.91 81 1.89 105 105.80 114 8.15 118 298.35 123 39.47 126 419.82 156 17.35 157 5.58 167 12.55 169 477.50 170 29.93 180 99.94	pg/g pg/g 77 612.91 451 ± 225 81 1.89 3.0 ± 1.5 105 105.80 108 ± 54 114 8.15 7.73 ± 3.86 118 298.35 348 ± 174 123 39.47 126 419.82 431 ± 215 156 17.35 23.3 ± 11.6 157 5.58 9.3 ± 4.6 167 12.55 12.0 ± 6.0 169 477.50 512 ± 256 170 29.93 180 99.94 116 ± 58

Conclusions

Excellent agreement was found between the PCDD/Fs and PCBs concentrations found in our laboratory and the reference values listed for this fortified fish tissue. ¹³C recoveries of the labeled compounds were very good. Extraction, clean up and analysis by properly trained personnel can be carried out in one day, resulting in low turnaround times for sample batches of any size.

PowerPrep, PLE, and Concentrator

For more information contact FMS:

FMS, Inc.

580 Pleasant Street Watertown, MA 02472 Phone: (617) 393-2396

Fax: (617) 393-0194

Email: onlineinfo@fms-inc.com Web site: www.fms-inc.com

