Semi Automated Clean Up for Persistent Organic Pollutants Analysis in Environmental Samples - Complete Separation of PCDD/Fs and PCBs for Sample Extracts in Toluene

Introduction

The continued interest in Persistent Organic Pollutants (POPs), such as polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs), biphenyls (PCBs) and PBDEs, has led to a variety of automated systems for the cleanup of complex sample matrices. This has resulted in development of our fully automated "Power Prep" sample cleanup instead of manual preparative open column chromatography.

To meet demands for a lower cost method that requires little financial investment, combined the features of the "PowerPrep" system - accurate, fast, reliable with short turnaround times and low background using FMS pre-packaged columns - with a relatively semi automated approach. important feature of the semi-automated technique described here is that the environmental samples can be in toluene (up to 10 mLs) and that all PCBs are collected in one fraction and all PCDD/Fs in another fraction.

This semi-automated method is ideal for environmental laboratories that want high quality sample processing without much financial investment.

Instrumentation

- FMS EZPrep123[™] System
- Vacuum pump
- ■Thermo Trace 1310 GC with Thermo DFS Magnetic Sector high resolution MS

Consumables

- FMS, Inc. High Capacity Acidic Silica column
- FMS, Inc. Neutral-Basic Silica column
- FMS, Inc. Basic Alumina column
- FMS, Inc. Carbon-Celite column
- Fisher Pesticide Grade Hexane
- Fisher Pesticide Grade Dichloromethane

- Fisher Pesticide Grade Toluene
- CIL Method 1613 ¹³C PCDD/F Stock Solution
- CIL ¹³C PCDD/F Recovery Standard
- CIL ¹³C PCB Internal Isotope Dilution Standard who-12 PCB, PCB-170 and -180, and indicator PCBs
- CIL ¹³C PCB Recovery Standard

Procedure

Stage 1:

- Assemble columns in order acidic silicaneutral/basic silica-alumina (no carbon used here).
- Syringe vial at top is used for conditioning and sample loading.
- Columns are conditioned with 40 mLs of hexane. Hexane is pulled by vacuum pump across all columns (vacuum, waste).

Stage 2:

- Samples are loaded across system in 2-10 mL toluene (Fraction 1, PCBs).
- Columns are eluted with 60 mL hexane (Fraction 1, PCBs)
- Silica columns are removed and alumina is eluted with 20 mL of 10% dichloromethane/hexane (Fraction 1, PCBs)

Stage 1:

■ Carbon columns are connected to the bottom of alumina columns and then both columns are eluted with 50 mL dichloromethane (vacuum, waste).

Stage 2:

- Alumina columns are disconnected from carbon and discarded. Carbon columns are turned upside down and eluted in reverse with 60 mL toluene (Fraction 2, PCDD/Fs);
- Total run time is less than 45 min
- Number of parallel sample clean up channels is unlimited

Additional Features

- Low re-use of tubing, syringes, parts and alass ware
- No electronics and mechanical parts to fail
- No service contract or maintenance to worry about
- Fast, 45 minutes run time
- No repetitive motions and minimal cleaning of reusable parts

					EPA
		Average	STDEV	RSD	Window
224'-Tr-PCB 13C STD	PCB_28	86.3	8.9	10.3	10-145
22'55'-Te-PCB 13C STD	PCB_52	62.4	8.5	13.6	10-145
22'455'-Pe-PCB 13C STD	PCB_101	69.2	4.8	7.0	10-145
344'5-Te-PCB 13C STD	PCB_81	71.4	11.7	16.4	10-145
33'44'-Te-PCB 13C STD	PCB_77	67.3	9.6	14.3	10-145
2'344'5-Pe-PCB 13C STD	PCB_123	77.2	4.6	5.9	10-145
23'44'5-Pe-PCB 13C STD	PCB_118	72.4	7.1	9.8	10-145
2344'5-Pe-PCB 13C STD	PCB_114	73.9	5.3	7.2	10-145
233'44'-Pe-PCB 13C STD	PCB_105	76.0	6.2	8.2	10-145
33'44'5-Pe-PCB 13C STD	PCB_126	82.2	6.0	7.2	10-145
22'44'55'-Hx-PCB 13C STD	PCB_153	71.9	16.3	22.7	10-145
22'344'5'-Hx-PCB 13C STD	PCB_138	89.0	23.0	25.8	10-145
23'44'55'-Hx-PCB 13C STD	PCB_167	84.0	13.6	16.2	10-145
233'44'5-Hx-PCB 13C STD	PCB_156	109.9	18.6	16.9	10-145
233'44'5'-Hx-PCB 13C STD	PCB_157	81.3	12.7	15.6	10-145
33'44'55'-Hx-PCB 13C STD	PCB_169	83.4	6.0	7.2	10-145
22'344'55'-Hp-PCB 13C STD	PCB_180	82.9	13.9	16.7	10-145
22'33'44'5-Hp-PCB 13C STD	PCB_170	80.8	13.4	16.6	10-145
233'44'55'-Hp-PCB 13C STD	PCB_189	84.8	16.8	19.8	10-145

233'44'55'-Hp-PCB 13C STD PCB_189 84.8 16.8

Table 1 with ¹³C-labeled recoveries in percent for PCBs in 10 g soil

				EPA
	Average	STDEV	RSD	Window
2378-TCDF 13C12 STD	94.1	5.3	5.7	24-169
2378-TCDD 13C12 STD	115.7	6.1	5.3	25-164
12378-PeCDF 13C12 STD	94.5	5.4	5.8	24-185
23478-PeCDF 13C12 STD	89.7	6.8	7.6	21-178
12378-PeCDD 13C12 STD	97.0	5.1	5.3	25-181
123478-HxCDF 13C12 STD	76.3	8.0	10.5	26-152
123678-HxCDF 13C12 STD	68.5	6.6	9.6	26-123
234678-HxCDF 13C12 STD	71.4	5.3	7.4	28-136
123789-HxCDF 13C12 STD	55.9	9.5	16.9	29-147
123478-HxCDD 13C12 STD	78.5	6.7	8.5	32-141
123678-HxCDD 13C12 STD	72.1	8.2	11.4	28-130
1234678-HpCDF 13C12 STD	66.6	8.3	12.5	28-143
1234789-HpCDF 13C12 STD	87.6	6.2	7.1	26-138
1234678-HpCDD 13C12 STD	78.8	9.9	12.6	23-140
OCDD 13C12 STD	73.5	7.4	10.1	17-157

Table 2 with ¹³C-labeled recoveries in percent for PCDD/Fs in 10 g soil

Conclusions

Excellent recoveries are seen with the new semi automated method using the FMS EZPrep123 System, as can be seen in Tables 1 and 2. Because the system is a closed system, mostly composed of disposable parts, the risk of cross-contamination is very low. Note that a complete separation of PCBs and PCDD/Fs is achieved and that environmental samples in 2-10 mL toluene can be processed by loading directly. The system can be set up as a low-cost alternative to the fully automated clean up equipment. Processing times are much shorter than other manual procedures. The certified prepackaged columns and simple, versatile system guarantee same morning or afternoon POPs analysis.

For more information contact FMS:

FMS, Inc.

580 Pleasant Street Watertown, MA 02472 Phone: (617) 393-2396

Fax: (617) 393-0194

Email: onlineinfo@fms-inc.com Web site: www.fms-inc.com

